INTEGRATION

Integration is a process, which is a inverse of differentiation. As the symbol $\frac{d}{d x}$ represents differentiation with respect to x , the symbol $\int d x$ stands for integration with respect to x .

Definition

If $\frac{d}{d x}[f(x)]=F(x)$ then $f(x)$ is called the integral of $F(x)$ denoted by $\int F(x) d x=f(x)+c$. This can be read it as integral of $F(x)$ with respect to x is $f(x)+c$ where c is an arbitrary constant. The integral $\int F(x) d x$ is known as Indefinite integral and the function $F(x)$ as integrand.

Formula on integration

1). $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(\mathrm{n} \neq-1)$
2). $\int \frac{1}{x} d x=\log x+c$
3). $\int d x=\mathrm{x}+\mathrm{c}$
4). $\int a^{x} d x=\frac{a^{x}}{\log a}+\mathbf{c}$
5). $\int e^{x} d x=e^{x}+c$
6). $\int(u(x)+v(x)) d x=\int u(x) d x+\int v(x) d x$
7). $\int\left(c_{1} u(x) \pm c_{2} v(x)\right) d x=\int c_{1} u(x) d x \pm \int c_{2} v(x) d x$
8). $\int c d x=c x+d$
9). $\int \sin x d x=-\cos x+c$
10). $\int \cos x d x=\sin x+c$
11). $\int \sec ^{2} x d x=\tan x+\mathbf{c}$
12). $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
13). $\int \sec x \tan x d x=\sec x+c$
14). $\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c$
13). $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
14). $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
15). $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \frac{x-a}{x+a}+c$
16). $\int \frac{1}{1-x^{2}} d x=\tan ^{-1} x+c$

Definite integral

If $f(x)$ is indefinite integral of $F(x)$ with respect to x then the Integral $\int_{a}^{b} F(x) d x$ is called definite integral of $F(x)$ with respect to x from $x=a$ to $x=b$. Here a is called the Lower limit and b is called the Upper limit of the integral.
$\begin{aligned} \int_{a}^{b} F(x) d x=[f(x)]_{a}^{b} & =\mathrm{f}(\text { Upper limit })-\mathrm{f}(\text { Lower limit }) \\ & =\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})\end{aligned}$

Note

While evaluating a definite integral no constant of integration is to be added. That is a definite integral has a definite value.

Method of substitution

Method - 1
Formulae for the functions involving (ax+b)
Consider the integral
$\mathrm{I}=\int(a x+b)^{n} d x-$
Where a and b are constants
Put $\mathrm{ax}+\mathrm{b}=\mathrm{y}$
Differentiating with respect to x
$a d x+0=d y$
$d x=\frac{d y}{a}$
Substituting in (1)

$$
\begin{aligned}
\mathrm{I} & =\int y^{n} \cdot \frac{1}{a} d y+\mathrm{C} \\
& =\frac{1}{a} \int y^{n} \cdot d y+\mathrm{c} \\
& =\frac{1}{a} \frac{y^{n+1}}{n+1}+\mathrm{c} \\
& =\frac{1}{a}\left[\frac{(a x+b)^{n+1}}{n+1}\right]+\mathrm{c}
\end{aligned}
$$

Similarly this method can be applied for other formulae also.

Method II

Integrals of the functions of the form
$\int f\left(x^{n}\right) x^{n-1} d x$
put $x^{n}=y$,

$$
\begin{aligned}
& n x^{n-1}=\frac{d y}{d x} \\
& x^{n-1} d x=\frac{d y}{n}
\end{aligned}
$$

Substituting we get
$\mathrm{I}=\int f(y) \frac{d y}{n}$ and this can be integrated.
Method -III
Integrals of function of the type
$\int[f(x)]^{n} f^{1}(x) d x$
when $\mathrm{n} \neq-1$, put $\mathrm{f}(\mathrm{x})=\mathrm{y}$ then $f^{1}(x) d x=d y$
$\therefore \int[f(x)]^{n} f^{1}(x) d x=\int y^{n} d y$

$$
=\frac{y^{n+1}}{n+1}
$$

$$
=\frac{[f(x)]^{n+1}}{n+1}
$$

when $n=-1$, the integral reduces to
$\frac{f^{1}(x)}{f(x)} d x$
putting $y=f(x)$ then $d y=f^{1}(x) d x$
$\therefore \int \frac{d y}{y}=\log y=\log \mathrm{f}(\mathrm{x})$

Method IV

Method of Partial Fractions

Integrals of the form $\int \frac{d x}{a x^{2}+b x+c}$

Case. 1

If denominator can be factorized into linear factors then we write the integrand as the sum or difference of two linear factors of the form
$\frac{1}{\left(a x^{2}+b x+c\right.}=\frac{1}{(a x+b)(c x+d)}=\frac{A}{a x+b}+\frac{B}{c x+d}$

Case-2

In the given integral $\int \frac{d x}{a x^{2}+b x+c}$ the denominator $a x^{2}+\mathrm{bx}+\mathrm{c}$ can not be factorized into linear factors, then express $a x^{2}+b x+c$ as the sum or difference of two perfect squares and then apply the formulae
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \frac{a+x}{a-x}$
$\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \frac{x-a}{x+a}$

Integrals of the form $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}$
Write denominator as the sum or difference of two perfect squares

$$
\int \frac{d x}{\sqrt{a x^{2}+b x+c}}=\int \frac{d x}{\sqrt{x^{2}+a^{2}}} \text { or } \int \frac{d x}{\sqrt{x^{2}-a^{2}}} \text { or } \int \frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

and then apply the formula
$\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left(x+\sqrt{x^{2}+a^{2}}\right)$
$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left(x+\sqrt{x^{2}-a^{2}}\right)$

$$
\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)
$$

Integration by parts

If the given integral is of the form $\int u d v$ then this can not be solved by any of techniques studied so far. To solve this integral we first take the product rule on differentiation

$$
\frac{d(u v)}{d x}=\mathrm{u} \frac{d v}{d x}+\mathrm{v} \frac{d u}{d x}
$$

Integrating both sides we get

$$
\int \frac{d(u v)}{d x} \mathrm{dx}=\int\left(\mathrm{u} \frac{d v}{d x}+\mathrm{v} \frac{d u}{d x}\right) \mathrm{dx}
$$

then we have $u v=\int v d u+\int u d v$
re arranging the terms we get
$\int u d v=u v-\int v d u$ This formula is known as integration by parts formula
Select the functions u and $d v$ appropriately in such a way that integral $\int v d u$ can be more easily integrable than the given integral

APPLIC ATION OF INTEGRATION

The area bounded by the function $y=f(x), x=a x i s$ and the ordinates at $x=a x=b$ is given by $A=\int_{a}^{b} f(x) d x$

