
INTEGRATION 

 Integration is a process, which is a inverse of differentiation. As the symbol 
dx
d

 

represents differentiation with respect to x, the symbol ∫dx  stands for integration with 

respect to x.  

Definition 

If ( )[ ] ( )xFxf
dx
d

=  then f(x) is called the integral of F(x) denoted by 

∫ += cxfdxxF )()( . This can be read it as integral of F(x) with respect to x is f(x) + c 

where c is an arbitrary constant. The integral ∫ dxxF )(  is known as Indefinite integral 

and the function F(x) as integrand. 
 
      Formula on integration  
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Definite integral 

If  f(x)  is indefinite integral of F(x) with respect to x then the Integral dxxF
b

a
∫ )(  is called 

definite integral of F(x) with respect to x from x = a to x = b. Here a is called the Lower 

limit and b is called the Upper limit of the integral. 

dxxF
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a
∫ )(   =   [ ]baxf )(   =  f(Upper limit ) - f(Lower limit) 

                                       =  f(b) - f(a) 

Note  
While evaluating a definite integral no constant of integration is to be added. That is a 

definite integral has a definite value. 
Method of substitution 
Method –1 
Formulae for the functions involving (ax + b) 
Consider the integral 
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Where a and b are constants  

Put a x + b = y 

Differentiating with respect to x 
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Similarly this method can be applied for other formulae also. 
 
Method II 
Integrals of the functions of the form 

( ) dxxxf nn 1−∫  

put nx =y, 
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Substituting we get  
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dyyf∫  and this can be integrated. 

Method –III 
Integrals of function of the type 
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when n= -1, the integral reduces to  
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putting y = f(x) then dy = f1(x) dx 

∴ y
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Method IV 
Method of Partial Fractions 

Integrals of the form ∫ ++ cbxax
dx

2  

Case.1  

If denominator can be factorized into linear factors then we write the integrand as 

 the sum or difference of  two linear factors of the form 
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Case-2 

In the given   integral   ∫ ++ cbxax
dx

2   the denominator ax2 + bx + c can not be 

factorized into linear factors, then express ax2 + bx + c as the sum or difference of two 

perfect squares and then apply the formulae 
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Integrals of the form∫
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Write denominator as the sum or difference of two perfect squares 
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Integration by parts 

 If the given integral is of the form  ∫udv  then this can not be solved by any of 

techniques studied so  far. To solve this  integral we first take the product rule on 

differentiation 
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       Integrating both sides we get 

             ∫ dx
uvd )( dx= ∫ ( u
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   then we have    u v= ∫ vdu + ∫udv  

re arranging the terms we   get 

 ∫udv  = uv- ∫ vdu    This formula is known as integration by parts formula 

Select the functions u and dv appropriately in such a way that integral ∫ vdu  can be more 

easily integrable than the given integral 

 

 



APPLICATION OF INTEGRATION 
 The area bounded by the function y=f(x), x=axis and the ordinates at x=a x=b is 

given by ∫=
b
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